Search results for "oxidation states"

showing 3 items of 3 documents

An experimental and theoretical study of a heptacoordinated tungsten(VI) complex of a noninnocent phenylenediamine bis(phenolate) ligand

2018

[W(N2O2)(HN2O2)] (H4N2O2 = N,N′-bis(3,5-di-tert-butyl-2-hydroxyphenyl)-1,2-phenylenediamine) with a noninnocent ligand was formed by reaction of the alkoxide precursor [W(eg)3] (eg = the 1,2-ethanediolate dianion) with two equivalents of ligand. The phenol groups on one of the ligands are completely deprotonated and the ligand coordinates in a tetradentate fashion, whereas the other ligand is tridentate with one phenol having an intact OH group. The molecular structure, magnetic measurements, EPR spectroscopy, and density functional theory calculations indicate that the complex is a stable radical with the odd electron situated on the tridentate amidophenoxide ligand. The formal oxidation s…

amidophenoxide radicaloxidation statesnoninnocent ligandkompleksiyhdisteetvolframiDFT calculationselectronic structure
researchProduct

A Selenium-Nitrogen Chain with Selenium in Different Oxidation States

2017

The reaction of tBuNH2 with a mixture of SeCl2 and SeOCl2 in a 6:2:1 molar ratio produces the novel selenium-nitrogen chain ClSeN(tBu)Se(O)Cl (4), in which the selenium atoms are in two different oxidation states, SeII and SeIV. The crystal structure of 4 is compared with that of the related SeII/SeII system ClSeN(tBu)SeCl (1) and differences are attributed to hyperconjugative effects. The energetics of the formation of 4 via two different routes are elucidated by PBE0/def2-TZVPP calculations. peerReviewed

oxidation statesselenium-nitrogen chains
researchProduct

An experimental and theoretical study of a heptacoordinated tungsten(VI) complex of a noninnocent phenylenediamine bis(phenolate) ligand

2018

Abstract [W(N2O2)(HN2O2)] (H4N2O2 = N,N′-bis(3,5-di-tert-butyl-2-hydroxyphenyl)-1,2-phenylenediamine) with a noninnocent ligand was formed by reaction of the alkoxide precursor [W(eg)3] (eg = the 1,2-ethanediolate dianion) with two equivalents of ligand. The phenol groups on one of the ligands are completely deprotonated and the ligand coordinates in a tetradentate fashion, whereas the other ligand is tridentate with one phenol having an intact OH group. The molecular structure, magnetic measurements, EPR spectroscopy, and density functional theory calculations indicate that the complex is a stable radical with the odd electron situated on the tridentate amidophenoxide ligand. The formal ox…

tungstenDFT calculations010402 general chemistry01 natural scienceslaw.inventionInorganic Chemistrychemistry.chemical_compoundDeprotonationlawOxidation stateMaterials ChemistryMoleculePhysical and Theoretical ChemistryElectron paramagnetic resonanceta116amidophenoxide radical010405 organic chemistryLigandkompleksiyhdisteetvolframielectronic structure0104 chemical sciencesCrystallographyoxidation statesUnpaired electronchemistryAlkoxidenoninnocent ligandDensity functional theoryInorganic Chemistry Communications
researchProduct